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Spin Interaction with an Ideal Fermi Gas
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We consider the equilibrium dynamics of a system consisting of a spin
interacting with an ideal Fermi gas on the lattice Z*, v>3. We present two
examples: when this system is unitarily equivalent to an ideal Fermi gas or to a
spin in an ideal Fermi gas without interaction between them.

KEY WORDS: Equilibrium dynamics; quantum spin system; Fermi gas;
particle in an ideal gas.

1. INTRODUCTION

This self-contained paper is the third in a series of papers‘!?) devoted to a
proof of the isomorphism between locally perturbed dynamics and free
dynamics. A particle interacting with an ideal gas can be imagined as a
local perturbation of the free system consisting of the particle and the ideal
gas without mutual interaction between them. Until now there was only
one example—a classical particle interacting with a classical gas on the
half-line—where the equivalence with the ideal gas was proven'® (the
methods resemble those of Ref. 2).

Here we consider an ideal Fermi gas on the lattice and a spin
(situated, e.g., at the point 0eZ’). This system (due to experience
elaborated in Ref. 1) seems to be the simplest system for revealing the
spectral reasons for the existence of equivalence between interacting and
free systems.

Our first result (Theorem 4) concerns the case when our system is
equivalent to an ideal gas. Here the spin “disappears” in the Fermi sea; this
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situation is similar to that in Ref. 3. We give the spectral explanation of this
phenomenon: the eigenvalue becomes the resonance.

The second result (only for quadratic perturbations) concerns the case
when our system is equivalent to an ideal gas plus a free quasiparticle.

2. MQLLER MORPHISMS IN CAR-ALGEBRA

Here we put the main result of Ref. 1 into a more general setting.

Let 2 be the complex, separable Hilbert space and (¥ = () the
CAR-algebra over . It is the C*-algebra with 1 generated by a*(f), a(f),
f e #satisfying

a*(f)a(g)+a(g)a* (/)= (/. &)1
a(f)a(g)+a(g)a(f)=0

We use the convention that (f, g) is linear in f.

For any self-adjoint operator H in # one can define the “free”
dynamics, i.e., the strongly continuous group 7, of *-automorphisms of ¢Z,
by

(2.1)

(a(f))=ale""f) (2.2)
If V= V*ed, then one can define the perturbed dynamics™

A =1 (A)+ 3 P jj ds, ---ds,

=1 8,2 2820

X [15,(V)yoorr LT5,(¥), T(A)] -], Aed (2.3)
The infinitesimal generator of this group is given by
Op=0o+ilV,-] (2.4)
where 8, is the infinitesimal generator of 7,. We shall consider direct,

ya(d)= lim 1_(7(4)) (2.3)

t— +oo

and inverse Mgller morphisms

Ve(d)= lim 7_(7/(4)) (2:6)

t-—> toc

if they exist.
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Theorem 1. Let the following conditions hold:

(a) There exists the dense set #, < # such that for any f, f'e #;
(e"f, /') € Ly(~ o0, 0) (2.7)
(b) ¥ =V*is defined as the finite sum of monomials

a*(fi)---a*(f) a(g,) - alg,) (2.8)

where n+m is even and f;, g, € #.
Then there exists ¢, = &,(¥) >0 such that for V'=¢V, |¢] <&y, Moller
morphisms (2.5) and (2.6) exist. It follows that, e.g.,

V+}7+:37+V+:ﬂs "/+Tr=TzVV+ (29)

Proof. The proof is a modification of the proofs of Theorems 1 and 2
in Ref. 1.

To prove the existence of the direct Mgller morphism, it is sufficient to
prove the existence of the dense subset (o« &F such that for any 4 € %,

I[t(A4), V]l € Li(—o00, c0) (2.10)
Let us choose

Ao={a*(f1) - a*(f.)a(g,) - alg.),
mz0,n20,f, g€} (2.11)

Then, if A =a(f), we use the formula
La(e"™f), a*(f1) - a*(f,) a(g,) -~ a(g,)]

= i (=LY 'S5 €™ ) a*(fy) - a*(f) - a*(fo.) alg,) -~ alg,)
| (2.12)

Vv

where ¥ means the missing of a*(f;). We note that (12) is valid only for
m-+n even.

A similar formula is valid for 4 =a*(f). For general 4 e, we use
the identity

[AB, C]=A[B, C1+[A4, C]1B (2.13)

several times.
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To prove the existence of the inverse Mgller morphism, it is sufficient
to prove that for any 4 e,

ILA4, =/ (V) 1l € Ly (0, o)

Again we restrict ourselves to the case 4 =a(f). Then

| o a< [T A s o) a
> JJ ds, ---ds,

‘IO<SI\»--<Sk<z<oo
X4, [rs, (Vs L5 (V) 1, (V)] -1 (2.14)
Let us put V=¢3 /| V;, where
Vi=a*(f{)---a*(f] ) alg])--alg)) (2.15)
Let
M=ifil+% Y 11 1/l led (2.16)
j=1 IiJ; ueliked,

where the sum is over all ;< {1,..,m;}, J,< {1,.., n;}; and

L L

S;={Hsws s &1ses &> s=U s, S|= 3 (m;+n)

j=1 j=1

Then

ILa(f ), 25, (V). T.(F)] -1
< Sn+ an+ er1+ 1 Z(_i)z‘(m

x| (f, Lexp(iS;, H) ] ho) l_[ (Lexp(iS,H)] A, [exp(iS;)1hpl  (2.17)

where the sum X is over all |S|*"*' ordered sequences #hj,

hy, hy,... h,, h,, where h, hieS. The sum XV’ is over all sequences

no ns

(Jos J1ss Jju) such that for all d=0, 1,.., n

(1) d<j,<n+1 (we also specify S,.,=1).
(2) Jj,can be equal to / for any 1 </<rn+1 at most |S] times.

In the remaining part of the proof (if is quite similar to Ref. 1) one uses
only the fact that

|(Lexp(iS,H) 1/, [exp(iS; H)] g)| = B(S,— S;)e L,(0, 0) ~ (2.18)
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3. QUADRATIC PERTURBATIONS

Any self-adjoint, finite sum of quadratic monomials in ¢ with the
conservation of the number of particles can be represented as

n

V=73 (£)a*(f) alf) (3.1)

i=1
up to a constant.
Let us put for some f,,..., f,

Pf)g=(g f)fs  P=3 PU) (32)

Lemma 1. Let V be given by (3.1). Then the dynamics (2.3) is a
free one and can be represented as

t/(a(f))=a(e""* Df) (3.3)

Proof. Easy calculation shows that [see (2.4)]

d,(a(g))=ali(H+P)g)

Then (3.3) follows.
We shall not pursue the case when V' does not conserve the number of
particles.

4. THE MAIN RESULTS

Let ¢Z(/5(Z7)), v =3, be the CAR-algebra of the lattice Fermi gas and
d((C) be the finite-dimensional CAR-algebra generated by {1, b, b*}.

The latter algebra describes the spin and b, b* satisfy the standard
anticommutation relations. The tensor product of these superalgebras (in
the sense of superalgebras) is again the CAR-algebra

a =a(lL(2")®A(C)=aA(C® L(Z"))
generated by 1, b, b*, a(f), a*(f), fel,(Z"). We denote for convenience

1

b=a(g,), Qo= (0

> eCO®L(ZY)

The free dynamics in ¢ is defined by

t(a(f))=a(lexp(itA)1f),  1.(b)=[exp(irt2)]b, IeC
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where = —A + ul is the lattice Laplacian plus constant. Let wg, be the
ground state on (Z(C) and w,,, be the ground or temperature state on
((1,(Z*)), which are equilibrium with respect to the free dynamics.

Then the free Hamiltonian in the GNS representation with respect to
W= Wg @ Wy 18

Hy(l)=H,®1+1® H,,, (4.1)

00
H —
oo )
acts in C* and H,,, is written down explicitely in Ref. 1 and acts in the
Fock space or in the Fock-tensor-anti-Fock space.
In the sequel we shall consider the particular cases of the following
general situation: let the C*-algebras ¢ and ¢’ be given. Let 7, and 1, be

the dynamics on them. Let @ be the 1,-invariant state on ¢Z. Let there exist
*-isomorphism a: (& — ¢’ such that

T, =01 4.2)

where

Our main task will be to prove the existence of a in some cases. The
following easy proposition allows us to obtain the spectral information
from this fact.

Lemma 2. If we denote w' =woa™' (the state on (I') then it
follows from (4.2) that the GNS Hamiltonians H, and H, are unitarily

equivalent.
First we consider the general case of isomorphism between two free

dynamics.

Let & =0(#) and A’ =d(H') be two CAR-algebras, t,(a(f))=
a(e™f), fe#, be the free dynamics on (¥, and let w be the quasifree
1,-invariant state on @, defined by (see Ref. 1)

(a*(f)---a*(fi) a(g,) - a(g,)) = 6 ,m det((Bf}, g:)) (4.3)
where B is the linear operator in #
B=B(H)=exp(—BH)[1 +exp(—BH)] 7", 0<f<o  (44)
Let us fix some unitary operator U: # — #’ and put
H'=UHU™,  tfa(g))=ale"g), geH"

w'(a*(fn)--a*(fi) a(gy) - q(g,)) = 6,,, det((B'f}, g1))  (4.5)
fi.gie#', B =UBU'
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We get now the isomorphism (4.2) between t, and 1, if we put

a(a(f))=a(Uf) (4.6)

ete.

Now we proceed to a particular example: the quadratic interaction of
a spin and an ideal Fermi gas

V,=eb*a(f)+a*(f)b) (4.7)

for some fel,(Z") with finite support.
Then, using Lemma 1, we have

t/(a(G)) = a(e™"T1G),  GeC@®L(Z)
H=HM)=1®H

PG =e(P((0, 1)+ ¢o) — P((0, /) — P(o)) G (48)
=&((G, 9o) F+ (G, F) o)
F=(0, /)

Lemma 3. Let f be of finite support on Z* and its Fourier trans-
form 7 be not identically zero on any level surface of the function

u(k) = Z 2(1 —cos k') +ue C*(T)

i=1

T=1[0,2n), k=(k',., k). Then there exists &, V,)> 0 such that for || <¢,
the operators H(A) + P and A are unitary equivalent if 2 € (u, u+ 4v), ie., 1
belongs to the interior of the spectrum of .

Lemma 4. 1If 1& (y, s+ 4v), then H(4)+ P is unitary equivalent to
H(4") for some real number A’ such that

|A— A1 =O(lel)

The proofs of these lemmas are given in the Appendix.
Theorems 2 and 3 stated below concern the case of quadratic interac-
tions, and Theorem 4 that of nonquadratic one

Theorem 2. Under the conditions of Lemma 3, there exists an
isomorphism a: A(C D ,(Z%)) — d({,(Z")})) such that

ar/(A)=1(a(4)), Ae@(CO®L(Z")) (49)

and 7, 1s the free dynamics of the ideal gas.
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Proof. Let U be the unitary operator such that
U:CPL(Z") - 1,(2Y), UH+P)U'=H
It exists by Lemma 3. Let us put
2a(G)=a(UG), GeC@®hL(Z") (4.10)
Then
at/«(a(G))=aa({exp[it(H + P)]} G) = a(U{exp[it(H + P)]} G)
= a([exp(itH)] UG) =1 (a(a(G))) (4.11)

Quite similarly, we get the following:

Theorem 3. Under the conditions of Lemma 4, there exists an
automorphism f of (C @ /,(Z")) such that

prlp~ =1, (4.12)

where
(a(G)) = a(e™*G) (4.13)
Let us consider now the nonquadratic perturbation

V=V,+eV (4.14)

where V= ’* is the finite sum of monomials
a*(F,)---a*(F,) a(G,) - a(G,)

with n+m even and F;, G;e C@®[,(Z") having finite support.

Theorem 4. Under the conditions of Lemma 3, there exists g; >0
such that for |¢'| < g the dynamics ¢! is isomorphic to the free dynamics ,
of the ideal Fermi gas.

Proof. By Theorem 2 it is sufficient to prove the isomorphism of 7}
and 1)/« This will follow if we prove the existence of Mgller morphisms

ps(d)= lim < (c/o())

7,(A4)= lim t¥(1)(4))
f— too

To prove their existence, we shall use Theorem 1 with 7)% instead of 7, in it.
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By (2.7) it is sufficient to verify that
(e"H+PE GYe L(~ oo, o) (4.15)

for F=(cy, f) and G={(c,, g)e CPI,(Z*) with f, g having finite support.
This will be proved in the Appendix (Lemma A4).

APPENDIX. INVESTIGATION OF THE FRIEDRICHS MODEL

Here we give the proofs of Lemmas 4 and 5 and of the condition
(4.15). This is reduced of course to the investigation of the operator / in
the Hilbert space C® L,(T"),

h<c>:</,c+efpg<pdk> (AD)
g eco + ug
where

ceC, ge L,(T")

2(1 —cos k') + u, kK'e [0, 2m)

U=

W=

i

and ¢ is the Fourier transform of the function fe/,(Z"). This is the well-
known Friedrichs model.')
Se
h=ho+eV (A2)

()2

and the perturbation V' has rank 2.

The operator 4, has an absolutely continuous spectrum on
[p, pt+4v], an isolated eigenvalue at the point 4, and no (continuous)
singular spectrum.

We shall prove that:

where

(a) If 4 lies outside or on the boundary of [u, u+4v], then under
the perturbation &V with ¢ sufficiently small the absolutely continuous
spectrum does not change, a singular spectrum does not appear, and there
is a small shift of the eigenvalue .

(b) if Ae(u, u+4v), then under some conditions on ¥ (or on the
function ¢) the discrete spectrum dissappears and the continuous spectrum
does not change.
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Lemmas 4 and 5 follow from (a) and (b). We note first that since ¢V
has rank 2, then it is well known®® that absolutely continuous parts of the
spectrum of 4 and A, are unitarily equivalent.

The Discrete Spectrum of A

The eigenvalue of A, if it exists, can be taken as (J) or (;).
First we consider the case of (9) with the cigenvalue A". Then we get
from (A1)

u(k) (k)= 2y (k) (A4)

So y(k)=0 a.e. and this case cannot happen.
In the case A(,) = 4'(;) one has

e | wp k=1 (AS)
ep +uy =AY (A6)

Then
Y= —ep/(u—1") (AT)

If '&[p, u+4v], then ¥ € L,(7") and the substitution of (A7) into (A5)
gives the equation

lp|?
2 !
A—¢ Lu_”dk_i (A8)

If 1 & (u, pu+4v), it is easy to prove [see the similar proof below for F(1')]
that Eq. (A8) for small ¢ has the unique solution A’ and moreover

Velwpu+d], 1V —2=0(e)

Let Ae(y, u+4v). Here we need the condition on ¢: let ¢ be a smooth
function on 7° not identically zero on any subset of the form
{K: u(k)=const} (later this is called condition A) (e.g, ¢ = 1). Then, for

A€ (u, p—4v),
ep/(u—A)E Ly(T")

For small ¢ Eq. (A8) has no solutions. In fact, the function

. def lo|?
F(}u)sz;—qj—fdk
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is smooth on S=R"\[p, u+4v], F(')—>0 if ’> +oo, and has finite
limits if 2’ — u from the left or A’ — u+ 4v from the right. So F(1") is boun-
ded on S, and choosing ¢, we can make |¢°F(’)| as small as we want. But

11— ') = min(|]A — ul, |4~ p—4v]) >0

So (A8) has no solutions

The Absence of the (Continuous) Singular Spectrum

Lemma A1. Let either of the following conditions be satisfied:

I. AeR\N(u, u+4v), e C¥(T)
2. de(u p+4v), e C°(T")

and ¢ satisfies condition A.

Then # has no singular spectrum for sufficiently small e.

To prove this theorem and condition (4.15), we shall use the following
well-known facts.

Let du be finite positive measure on R' with the support in (g, b) and

v (x)=v(x, _V):JPJ,(I—X) du(t)

1 y
P},(Z‘——X):;m, y>0

Lemma A2. (a) (Ref. 12.) Let v,(x) tend to p(x)eL,(a, b) when
y— +0 in the L,(a, b)-norm.
Then p(?) is absolutely continuous and du(r) = p(¢) dt.

(b) (Ref 11.) If u(s) is absolutely continuous and du(r)=p(t) dt,
p(t)e C(RY), p(t)=0 for 1 & [a, b].

Then v,(x) tends to p(x) when y — +0 uniformly on [a, b].

Proof of Lemma A7. The essential spectra of 4 and #, coincide. So
the singular spectrum of 4 belongs to [u, u+4v]. Let E, be the spectral
family for A. It is sufficient to prove that for a dense subset of vectors F the
restriction of the measure (E.F, F) onto [y, p+4v] is absolutely con-
tinuous (with respect to Lebesgue measure). Let us put for z=x+1iy, y >0,

R(z)=Rpz)=((h—2)"'F, F) (A9)
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F will be specified later; and define measure u(¢) by

o(x, ) & 2 Im R(z) =" j Im(t—z)~* d(E,F,F)

ot e
—x f(l_x)eryd(E,F,F) (A10)

The calculation of the resolvent

gives
Ez[c—s Vo dk}/[l— | ﬂdk]
™U—Z ruU—2Zz
J— ot (A11)
e
Let
S={F=(;>: wecw(r)}
S is dense in C® L,(7"). Let us put for convenience
k
¢-( )EL u(‘/;(()_)zdk (A12)

for any Y € C*(T"), Im z>0. Let us fix some F=(j)e S, z=x+iy, y>0.

Then
wo=(-2 (1)

[c—eg.(v@)I[c—ed.(0¥)]
Al13
i—z— 1) (A13)
Lemma A3. For any Yy e C®(T"), v=3, z=x+iy, y>0, and any
x € [, u+4v], the following limit exists:

=¢-(IY1*) +

im ¢, W) = beolth) (A14)

v +0

and, moreover, the convergence is uniform on [y, u+4v] and F. o ()€
Clu, u+4v].
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Proof. We can write

V(k) dk o J(t)dt
qsz(w):Lw u(k)_;f

o —12Z

where J(t)=J, (1) is the Gelfand—Leray function.”® We shall use the
following well-known properties of this function®):
1. J(t)e C™(u, p+4v)
2. J(1)=0, te R\(u, u+4v)
3. 1IN0 ~ A (1 — @)D" 0
|J(6)| ~ B(u+4v—)02 =Dt i+ 4y —0

n=0,1,2,.. and A4,, B, are some constants. We have

=] (1= x) Jo) dt i T yJt) dt (A15)

cw (t—x)2+y? t—x)*+y?

For v =3, J(t) is continuous and it follows from Lemma A2(b) that the
second summand in (Al5) uniformly on [p, u+4v] tends to inJ(x) if
y— +0.

Let us prove that the first summand uniformly on R' tends to the
Hilbert transform of J(¢), that is, to

Jx+1)—J(x—1) s
!

GJ(x):rO (A16)

It is easy to see that J(r) satisfies the Lipshitz—Holder condition for any 9,

(2 +8)~ J(1)| < cld]'? (A17)

So (A16) is correctly defined. We have

ag (° (t=x)J(@)dt = 1[Jx+0)—Jx—1)] ,
N[ ol

v
A%, w (=% +y* b 2+ y?

Using (A17), we get

lv,(x, y) — GJx)l—“ y? <JJ(x+t)——J(x-t)>dt

2+ y? t

y2 —1/2
:0( 5 dz>_o(1) (A18)
0



64 Aizenstadt and Malyshev

So we have proved that ¢, , () uniformly on [a, b] tends to
Gt io() =GJy(x) + in y(x) (A19)

Since J,,(x) satisfies the Lipshitz-Holder condition (A17), then (see
Ref. 13), GJ,(x) satisfies the Lipshitz-Holder condition with the exponent

1/2. So ¢., () is continuous. Lemma A3 is proved. So, for any
YeCo(T), v=3,

[c—ef.ioly)I[C—eh. ., i0(p¥)]
A=x—&. iollol?)

l»l—i.n—lo R(x + i}’)=¢x+i0(|‘/f|2)+

def

' R(x +i0) (A20)

exists. Let us prove that this convergence is uniform on any interval
[a, b= (u, p+4v).

In fact, if condition 2 of Lemma Al is satisfied, then the imaginary
part —e’nJ 1o12(x) of the denominator in (A20) is not equal to zero. If the
condition 1 of Lemma A1 is satisfied, then the real part 1—x —&>GJ,,p(x)
of the denominator is not equal to zero.

Due to the uniform convergence of ¢, ,,.(¥), y— +0, we have the
desired uniform convergence. Lemma A2(a) shows that (E F, F) is
absolutely continuous on any [a, ] < (i, # + 4v), and, moreover,

p(x)=n"Im R(x +i0) (A21)
Lemma Al is proved, since u and p+ 4v are not eigenvalues of A.

The Proof of Condition (4.15)

Lemma A4. Let condition 2 of Lemma Al be satisfied and vy,
Y,e C®(T"), vz 3. Then, for sufficiently small ¢,

<e"h<‘;ll>, (;2))53(:)@1(—00, ) (A22)

Proof of Lemma A4. By the polarization identity it is sufficient to

prove (A22) for
¢y ¢y
= =F
()-()

(e™F, F) = f ¢% p(x) dx (A23)

We have
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where p(x) is given by (A21)in [y, g+ 4v] and is equal to 0O outside of this
interval.
To estimate the oscillatory integral (A23), we need the following.

Lemma A5. Let f(x) € CX0,al, f(0) = 0, f(x) e C[O, al,
f"(a)=0, n=0,1,2. Let us suppose also that for x>0, (i) |f'(x)| =
0(x=%), (i) Lf"(x)l = O(x~°~") for some &, 0 <5 < 1. Then

U(s)zj: e f(x) dxe L,(— a0, ) (A24)

Proof of Lemma A5. Let 6,e(0,1-38), h(x)=x""%f"(x).
Integrating by parts, we get

1S 70

U(s) = —H” 55 f1(x) dx = —%J e X Ih(x)dx  (A25)

It follows from (i} and (ii) that A(x) is of bounded variation on [0, a].
So Lemma A5 follows as by Theorem 2 of Ref. 9:

|U(s)l =0(Is| ~' =) (A26)

To use this lemma, we must investigate the behavior of p’, p” in the
neighborhood of the points p and p+4v. To this end, we shall study the
behavior of functions ¢, ;o(1), which exist by Lemma A3.

Lemma A6. The function ¢(x)=d¢., o(¢) satisfies the following
properties (n=1, 2):
(1) ¢(x)eC¥u, u+4v),  ¢(x)eClu, p+4v]
2) 147N =0((x—@)"?" "),  x>p x—up (A27)
|6 (x)| = O((n + 4v — x)172~ ), x<pu+4dv, x—-pu+dv

Proof of Lemma A6. Continuity of ¢(x) was proved in Lemma A3.
By (A19) we have

#(x) = GJ(x) + inJ(x) (A28)

where J(x)=J,(x) is the Gelfand-Leray function.

From the properties 1-3 of J,(x) indicated in the proof of Lemma A3
it follows that (n>0)

(a) J(x)eC=(u, u+4v), J(x)e Clu, u+4v]
(b) [J"(x)=0((x—pw)'?~"),  x>p, x-u (A29)
|J™(x)] = O((u+ 4v —x)">~ "), x<pu+4v, x-out+dy

822/48/1-2-5
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So it is sufficient to prove that GJ(x) satisfies the properties 1 and 2 of
Lemma A6.

Using the C*-partition of the identity, one can assume that (we put
=0 for convenience) for some a >0

(@) J(x)eC*(0,a)
(b") |J™(x)=0(x'2""), x— +0, n=0; J"a)=0, n=0
(A30)

Let us prove that GJ(x) is differentiable on (0, a). We shall use the
following simple result:

Lemma A7. If the function xf(x) has a derivative in x,+#0, then
f'(xq) exists and

1
f’(xo)=x—0 LOSX)) = = (x0)] (A31)

Now we use the identity

xGJ(x):G(xJ(x))wrc J(1) dt (A32)
Since xJ(x)e C'(R') and xJ(x) is identically zero outside (0, a), then
G(xJ(x))e C}(R") and

di (G(xJ)(x)) = G(xJ'(x) + J(x))
X

= G(xJ')(x) + GJ(x) (A33)
It follows from (A32) that xGJ(x)eC'(R'). So, by Lemma A7,

GJ(x)e CY0, a), and

1
(GJ)(x) =~ [(G(x]))(x) — GJ(x)]

=

_! G(xJ' )(x)=GJ'(x) (A34)

X

In the second equality we used (A33), and in the third we used (A32) for
J'(x).
Let us suppose that for x - +0

(GT)"(x)| = O(x~""?) (A35)

Since the asymptotic behavior of xJ'(x) and J(x) for x — 40 are the same,
there exists |(G(xJ')) (x)| = O(x?) for x - +0.
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But, by (A34),
X(GJY (x) = G(xJ')(x)

Then by Lemma A7 there exists (GJ)"(x) for x #0,

[(GT)"(x)| = E ((G(xJ")) (x) = (GJ) (x)| = O(x~*?)

Now we must prove (A35). We have

w J —J(x—t
(GJ)'(x):GJ'(x):f (”’)t x=1 4 (A36)
0
Let us divide the integral (A36) into three integrals:
x/2 x 9]
GJ'(x)= +1 + A37
( ) J‘0 ‘L/Z ‘L’ ( )

We have the following estimates for these integrals

f\ﬁ J(x+1)—J(x—1)

dt‘ =0 ([“‘ﬁ (x—1)~¥2 dt) =0(x""?)  (A38)
0

o ‘
< J —J(x— 2"
J J(x+1)=-J(x t)dtlg_f [J'(x+1)—J(x—1)| dt
/2 ! * o2
4 rx
E - a=oi ) (A39)
X x/2

=0(j°°——1—dt>=0(x1/2) (A40)

« Hx+n'"?

We changed the variables in the last integral,

0 1 1 o 1
—_——adt=—s | ———— 5 d!
J.x t(x+t)l/2 x1/2 L t(1+[)1/2
Lemma A6 is proved.

Recall that the density of the measure (E F,F), F= (), on [p, p+4v]
is equal to

[c—s¢x+,-o(w¢)1[é—e¢x+fo(¢’@]> (Ad1)

1 2
p(x):—‘]%Im <¢x+i0(“ll| )+ i—x_82¢x+i0(|(p|2)
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Using Lemma A6, it is easy to verify that

(1) p(x)e C¥y, p+4v)

2) 17N =0((x—p)"?""),  x>p x-p
p" (X)) =0((p+4v—x)"27"), x<u+dv (A42)
x =+ 4y, n=1,2

To end the proof of Lemma A4, one must use the C*-partition of the
identity and Lemma AS.
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